A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops

نویسندگان

  • P. J. A. Janssen
  • P. D. Anderson
چکیده

A boundary integral method is presented for drop deformation between two parallel walls for non-unit viscosity ratio systems. To account for the effect of the walls the Green’s functions are modified and all terms for the double-layer potential are derived. The full three-dimensional implementation is validated, and the model is shown to be accurate and consistent. The method is applied to study drop deformation in shear flow. An excellent match with small-deformation theory is found at low capillary numbers, and our results match with other BIM simulations for pressure-driven flows. For shear flow with moderate capillary numbers, we see that the behavior of a low-viscosity drop is similar to that of drop with a viscosity ratio of unity. High-viscosity drops, on the other hand, are prevented from rotating in shear flow, which results in a larger deformation, but less overshoot in the drop axes is observed. In contrast with unconfined flow, high-viscosity drops can be broken in shear flow between parallel plates; for low-viscosity drops the critical capillary number is higher in confined situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surfactant effects on thermocapillary interactions of deformable drops.

A three-dimensional boundary-integral algorithm is used to study thermocapillary interactions of two deformable drops in the presence of bulk-insoluble, non-ionic surfactant. The primary effect of deformation is to slow down the rate of film drainage between drops in close approach and prevent coalescence in the absence of van der Waals forces. Both linear and non-linear models are used to desc...

متن کامل

Low-Reynolds-number motion of a deformable drop between two parallel plane walls

The motion of a three-dimensional deformable drop between two parallel plane walls in a low-Reynolds-number Poiseuille flow is examined using a boundary-integral algorithm that employs the Green’s function for the domain between two infinite plane walls, which incorporates the wall effects without discretization of the walls. We have developed an economical calculation scheme that allows long-t...

متن کامل

Chemical Reaction Effects on Bio-Convection Nanofluid flow between two Parallel Plates in Rotating System with Variable Viscosity: A Numerical Study

In the present work, a mathematical model is developed and analyzed to study the influence of nanoparticle concentration through Brownian motion and thermophoresis diffusion. The governing system of PDEs is transformed into a coupled non-linear ODEs by using suitable variables. The converted equations are then solved by using robust shooting method with the help of MATLAB (bvp4c). The impacts o...

متن کامل

Finite Integral Transform Based Solution of Second Grade Fluid Flow between Two Parallel Plates

The importance of the slip flow over the no-slip condition is widely accepted in microscopic scaled domains with the direct impact on microfluidic and nanofluidic systems. The popular Navier Stoke’s (N-S) flow model is largely utilized with the slip flow phenomenon. In the present study, the finite integral transform scheme along with the shift of variables is implemented to solve the equation ...

متن کامل

Lattice Boltzmann Simulation of Deformation and Breakup of a Droplet under Gravity Force Using Interparticle Potential Model

Abstract In this paper interparticle potential model of the lattice Boltzmann method (LBM) is used to simulate deformation and breakup of a falling droplet under gravity force. First this model is applied to ensure that the surface tension effect is properly implemented in this model. Two tests have been considered. First, it has been checked an initial square drop in a 2D domain can freely def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008